A NON-COMMUTATIVE WEYL-VON NEUMANN
THEOREM

BY
DAN VOICULESCU

A non-commutative Weyl-von Neumann theorem is proved. Among its consequences :
every operator on an infinite-dimensional Hilbert spaces is a norm-limit of reducible
operators. A reflexivity theorem for separable norm-closed subalgebras of the Calkin
algebra is also obtained.

The starting point, for the present work, was a question raised by
P. R. Halmos ([3] problem 8.), for which we provide an affirmative
answer : every operator on a separable infinite-dimensional Hilbert space is
a norm-limit of reducible operators. This led to a theorem on representa-
tions of separable C*-algebras, that may be regarded as a non-commutative
extension of the classical results of Weyl and von Neumann about the
representability of hermitian operators as small compact perturbations
of diagonable hermitian operators.

This paper has two sections. In the first section we prove our non-
commutative Weyl-von Neumann type theorem (see theorem 1.5 and
corollary 1.6). In the sense of Brown, Douglas, Fillmore theory ([1]) we
prove that all trivial extensions of the compact operators by a separable
C*-algebra are equivalent and that the equivalence class of trivial exten-
sions is a unit in the semigroup of all equivalence classes of extensions
(theorem 1.3 and corollary 1.4).

Besides we establish a reflexivity theorem for norm-closed separable
subalgebras of the Calkin algebra (theorem 1.8).

The second section outlines some of the consequences of the first
section in operator theory : the answer to Halmos’® question (proposition
2.2), the characterization of operators with closed unitary orbit (propo-
sition 2.4) and the charaecterization of operators the derivations of which
restricted to the hermitian operators have closed range (theorem 2.5).

§1

Let $ denote a complex separable infinite-dimensional Hilbert
space. The set of bounded operators on $ will be denoted by £ ($). By
# (H) we shall denote the compact operators and by p the map form
Z(9) onto the Calkin algebra 2 (9)/H ($).

Lemma 1.1, Let o < £(9) be a separable sub - C*-algebra,
I e o and let = be a representation of p (of) on a Hilbert space $,, which
admits a cyclic vector & e $,. Let further w,, ..., x, c o and B, =B, =
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cn(p () & be finite-dimensional subspaces such that = (p (x;)) B,<B,.
Let also €> 0 and a finite-dimensional subspace Wc H be given. Then
there is a linear isometric map L : B, — $ such that L (B,)1. W and

1L 7 (p (#)) b — LAl < <|h]

Jor he®B,j=1, ..., n
Proof. Let {f:}1<i<psq be an orthonormal basis of B,such that
{ex}1<k<» e a basis of B,. Suppose || £]| = 1 and consider %; € & such that

TPu)E=6(l<k<p+q.

Write also :

Ptq .
r@@)ea=Yale (1<i<p)
k=1

Consider the C*-algebra # = & + A (H) and ¢ the state of #
defined by _

) =< (p@)E& E>.

Consider also @ € X ($) = # the orthogonal projection onto \/

1< k<p+a
uf Wand beF the positive element :

piq y * P+q "
b = 2 Ty Uy — Z ak,-’ ’ul) T, Uy — E agi ’uk) .

1sisn 1<i<p k=1 kel
We have :
2@ =¢(b)=0
ol ) =203;1<%j<p+9

. It is known (see [2], 11.2.1) that ¢ is a weak limit of vector-states
of #. Hence, we can find vectors v, € $, |na|| = 1 such that :

lim Q@ Nmy Nm) ="1'ilg Oty My =0

Hm {4y Ny Uy M) = 8y
oo ,
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Then, for L, = (I — @) 1, we have :

twl Vw8, L)1

1<k<p+q

| D+q y
Xy Ug Ly — Z ail) uy Cn

‘ =0 (1<j<n 1<i<p)
k=1

lim

m— 0

Hm Cuy Gy s Gy == 8,y

m-» 0
A<, t<p+ 9

Let us define X, : B, -~ $ by X, €; = u; {,,. Then it X, has polar
decomposition X, = U, (X} X,)"2 it follows from the preceding rela-
tions that :

lim | X,, — Uyl =0

lim ||2; Uy, 6, —- Up 7w (p (1)) €)| = 0

1<jsn 1<i<yp)
Un (B,) L 1B

Thus, we can take L = U, for m great enough.
Q.E.D,
LEMMA 1.2. Let of ¢ £ (H) be a separable sub-C*-algebra, I € o
and let {m}2, be a sequence of representations of p (&) on Hilbert spaces
{9,121, which admit cyclic vectors £, € $,. Then there are linear isometric
maps L.: §,—> 9 such that r # s = L (9,) L L, (9,), L, = (p(x)) —
— L, is compact and lim ||L, =, (p (x)) — 2L,|| = 0, for every e o.

Proof. 1If the representations m, are finite-dimensional then the
lemma is an immediate consequence of the preceding one. We shall restrict
the proof to the case when all =, are infinite-dimensional in order not to
complicate the notations. The case when some =, are finite-dimensional
and some infinite-dimensional requires an easy adaptation of the argument
below, which we leave to the reader.

Let {«;};2, be a total sequence of hermitian elements of /. We
define inductively M,, = € &, and

Dy = My, V( \k/ ™ (P (%)) smk,r)‘

j=1
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Consider P,, the orthogonal projection of $, onto M., and Q,,, = p,,,
Qir = Piy —Pr_y,r (B 2 2). Then

Ql.r T, (p (wk)) Qj.r =0

if [i —j|>2 and max (i,5) > k + 2, or equivalently : the operator-
valued matrix of =, (p(2,)) with respect to the decomposition

53,- = intl:.r @Qt+1 (g’r) ® Qk+2 (5:’) ®....

is tri-diagonal.
Consider then :

r 2r —k
R,, = Q. and
b k§1 or —1 kr

@ni-t k — (2r)2

= k=(2r)j—ﬁ (27.)1—1 _— (27-)1—2

Qk,r +

@n)i 1%
PR S . el S
k=it (2r) — (27)

for j = 2.
Obviously § R;, = I. The tri-diagonality of the =, (p (), already men-

tioned, yiél.als the following estimates :
1) If (2ry~2 >k then

LRI, =, (0 (@)l < 2 @l (@rY2 — @) 2)ie.
2) If 2r >% and j =1, 2 then

([BYZ, =, (p (@)1 < 2K flall (2r — 1)7V2
It follows that :

3 IR, = (0 (@)]l< o
ic1
for all k and r. Moreover, if 2r >k then

S IR, = (@ (@)]] < (4k + 3) (2r — 172 ol

j=1
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Putting the set of pairs of positive integers (r, j) into a sequence, we ean
apply Lemma 1.1. recurrently to obtain isometries :

Ly: Meng1 = H
which enjoy the following properties :
(rs3) o (8, %) = Ly ; (Mands1) L Ly p (Maaysr’)
I Lys 7 (2 (2a)) b — @4 Ly s bi| < 277 {2y |IB]]
for n < (2r) and h € My,

Since R} ($,) <My the composition L, , RY2 makes sense, and
in case n<(2r) we have : :

WLry BiF 7 (P (€0)) — @ Ly RS < |[BYE, w0, (p (@2)] + 2771 || 2a].

It follows for all » and #:

(*) | Z ”Lr,J -Ri./:vz T (.p (wn)) — &y Lr,l R}'lf ” < 0.
i=1
Moreover, in case 2r > n we have :
(#4) Y Ly B3 m (P (4)) — @4 L,y BYE| <

i=1

< |20 (277 + (4n + 3) (2r — 1)-12)

Now we detine L, = YI,, R¥%. Since ¥\ E,,=1I and the I,,

. 23 | =1
have mutually orthogonal rafnges it follows that L, is an isometry. Rela-
tion (*) shows that L, =, (p (#,)) — @, L, is compact and relation (%)
yields

lim||L, =, (» (4)) — @, L,|| = 0.

Since the sequence {#,}Z, is total in & it follows that L, =, (p (%)) — L,
is compact and lim || L, =, (p(x)) — «L,|| = 0 for every z e of.
Q. E. D.
DEFINITION. Let p,, p, be representations on separable Hilbert spaces
D11 9q of a separable C*-algebra with unit of. We shall say that oy, py are
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approximately equivalent (17 09) if there is a sequence of wnitary opera-
tors u,:$H, — H, such that

pr(®) —ug og (@) u, € (51)
l{fg lloa (@) — u pa (®) ws]| = 0

Jor every x € .
It is easily seen that approximate equivalence is indeed an equi-
valence relation. Moreover, clearly Pr~ p2 implies Ker p, = Ker p,

and Ker po o, = Ker p o p,. Another simple property of approximate
equivalence is that if p, ~ py and P3~ ¢4y then o, & Ps~ 02 @ pa-

THEOREM. 1.3. Let of be a separable C*-algebra with unit and pa
representation of of on the separable Hilbert space . Let w be a representation
of po () on a separable Hilbert space $.. Then :

Py edmopop.

Proof. The representation = of pp (&) is at most a countable
direct sum of cyelic representations of p p (&). We shall restrict the proof
to the case when = iz an infinite direet sum of cyclic representations of
P p (&), the case of finite direct sum being a corollary.

Thus, suppose © = @ w;, where =; is a representation of p p (&)
=1
on a Hilbert space $; and has a cyelic vector.

Let {%,}nen be a total sequence of hermitian elements in &. Using .

Lemma 1.2. for a sequence of cyclic representations of pp (&) in which
every w; appears an infinity of times, we can then select for each
(¢,5) e IN X [N 2 linear isometric map

Li.J D=9
such that
(2,7) # (b, 1) = Ly ; (9:) L Ly (Hx)

Ly mep p(®y — p () Ly is compact for every x € o and
i+ ,
S Ly mepe (2,) — p (@) Lyl < 277
8=1

Consider then

L=&=é&»$

defined as I, (c‘% h,) = ¥ Ly by

$=1 i=1
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We have :
Y 1Ly e pp(@n) — p () Lyl <
i=1
< Y 1Ly mipe (#) — (@) Ll + Z Q-i-i
1

i i=n41

It follows that
Limwpe (2) — p (%) Ly
is compact for every # e IN. Since {@,}nen is tofal in s,
Lympe(2) — (@) Ly
is compact for every x e &. Moreover, if j>n we have

MLy mpe (®a) — o (@) Lyl| <

< Z”Lﬁ T P e (%) — p (@) Lyl < 277

=1

Again this yields
lim |L; mpp (®) — p (@) Ly || =0
Findel

for every # € .
Consider now

8, =1 —kf;. L, LF + kf; Ly, Lt.
We have :
[Ly L, o (2)] = Lg (L¥ o (2) — mpe (@) LE) +
+ (Ly wp o (®) — p (@) Ly) Li
(Let L, p (0)] = Lysy (L¥ ¢ (®)— wp p () Le) +
+ (Lepa mpe (9) — o () Liyy) L.

Hence, [L; L¥, o (x)] and [Ly., L§, ¢ ()] are compact.
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Moreover :

s

I[LZe L, o (@)1l + ij La 42 Li¥y o (2a)]l] <
k=

k=j

It

j+n )
< Y (I ZE, o (@a)]ll + l| [lxar Lty o (@a)]l) + 4 Y, 27% < 0.

k=3 k=j+n

This yields [8;, p (2)] € X (9) for every = e .
On the other hand, if » < j we easily find :

I8y o (#a)) < 2774
This again, yields:

Hm |8, ¢ (#)]]] =0

for every x e &f.
- Consider now :

4% ©9n > $
defined Dby :
Uy (b @ hy) = 8; b + Ly hy.
Then, clearly u«; is unitary and:
U (p@ mopop) (@) — p(2) U

is compact for every z € & and

}112 lufe @ mepop) () — p(®)us]| =0

for every r e H.

: Q.E.D.
CoROLLARY 1.4. Let p,, p; be representations of the separable

C*.algebra with unit of. Suppose _
Ker p, = Ker pop, = Ker py = Ker pop,. Then :

%1 ';’ P2-

Proof. Since Ker pop, = Ker p, there is a representation m; of
P p; () such that =, o p o p, = p,. Analogously there is a representation
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7, of P po(f) such that myopop, = p,. Tt follows from the preceding
theorem that : . :

PL 7y PL® Topop = @D p,

P2y 2@ meoPopy = 2@ ;.
r ‘ Q.E.D.
THEOREM 1.5. Let ), p, be representations on separable Hilbert
spaces H1, 9. of a separable C*-algebra with wnit of. Consider 9, =

= py(Ker pop,) §; and H;:= p, (Ker p o p,) H,. Then, the following conditions
are equivalent :

(1) PL 7 P2
(ii) There is a sequence of unitary operators u,:$, — 9, such that

Hm || wf po( @) ux — py(2))| = 0
k-

Jor every x € .
(i) Ker p1,= Ker oy Ker pop, = Ker pop, and the represen-
tations of o on 9, and H; induced by o, and respectively o, are equivalent.
(iv) Ker p, = Ker p,, Ker p op, = Ker p op, and the representations
of Ker p opy =Ker pop, on H;and H, induced by 5, and respectively
ps are equivalent.
_ Proof. Clearly (i)=> (ii) and (iii) = (iv). Also (iv) = (iii) follows
immediately from the fact that the representations of the ideal Ker
P opy = Ker pop, on H,; and respectively §; are non-degenerate. Hence,
we shall have to prove (iii) = (i) and (ii)= (iv).
(iii) = (i) Let $ be a separable Hilbert space and T, Ty he repre-
sentations of p p; (&) and, respectively, p p,(#) on § such that Ker
pomy = 0, Ker por, = 0. By Theorem 1.3. we have

Pl';~91: pL@moponp 4
Pe~P2= pa@® Mo po py.

Consider also

’

pi="01191= p|9H
=719 0%H.0%))
P2 = Pz | 92 = 0219,
P2=119 ®(H:0 9

Sinclt‘; Kel‘ p1’ = Ker pop!’ = Ker po pr = Ker pop, = Ker p;’ = Ker
P o g2’ it follows from the corollary of Theorem 1.3, that p}’ ~ ps . Since
a

prand p; are equivalent, it follows that f1 ~ 8. and, hence, also p, ~ p,.
. a . [ ]
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(ii) = (iv). That KXer p, = Ker p, and Ker pop, = Ker pop,
follows immediately from (ii). To prove the last part of (iv) we may replace
the u¢s by a weakly convergent subsequence and thus suppose they have
a weak limit w.

Since py(#), ps () are compact for x € Ker pop, = Ker pop, it
follows that uf p, (#) u; converges weakly to u*p,(#) u and u, g, (@) w}
converges weakly to % p,(#) 4* and hence

u* pg(@) u = py(®)

u py (2) u* = py(2)

for 2 € Ker po p, = Ker p op,.

Consider x;eKer pop, = Ker popy(jeN) an approximate unit
of Ker p op; = Ker p op,. Then, denoting by P, P, the orthogonal pro-
jeetions of $, onto $H; and, respectively, of $, onto $:, we have that
p,(;) converges strongly to P; and py(;) converges strongly to P,. Hence,
we have :

pa(®) © = u py(%)
u* Pyu = Py, u Pyu* = P,
Consider v = P, u P,. We have
v*v =P u*P,u P, =P,
vv*¥ = P,u P u* P, =P,

e (#) ¥ = v py(@) (for « e Ker p o p, == Ker p o p,), which ends
the proof. '
Q. E. D.

Remark now that if p is a representation of & on $, then the res-
triction of pto $’ = p (Ker p op) (H) is a direct sum of irreducible repre-
sentations. Also, there is a representation = of p p (&), which is a direct
sum of irreducible representations such that Ker p o = = 0. This gives the
following corollary.

COROLLARY 1.6. Every represeniation of a separable C*-algebra with
unit, on a separable Hilbert space is approzimately equivalent to a direct
sum of irreducible representations.

TurorREM 1.7. Let p be a revreseniation of a separable C*-aljebra
with unit of on a separable Hilbert svace $. I'n order that all representations
of of approximately equivalent with p be equivalentit is necessary and suffi-
cient that p(ct) be fimite-dimensional.

Proof. The sufficiency of the condition dim p(&/) < o0 is quite
easy, so we shall concentrate on the necessity.
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Hence, assume that every representation of of approximately equi-
valent to p is equivalent top. First, we shall prove that the spectrum

N ) O\
p o(ch) consists only of isolated points. Suppose w e pp(cf) is not an

N
isolated point and let w; € p(d)\{n} (i e IN) be a sequence which has
- as a cluster point. Let further = be equivalent to = and = be equi-
valent to m(j € IN). Let also $,c$ be the greatest reducing subspace
for p(cf) such that mopop and p|H, be disjoint. Remark that

Ker mopop>Ker po( @ w'opop)
Y]

and hence

P pl 5:© ® nopopz el ®O mWopo o @gﬂ"’opf’ P
b »
~ 019, ® O pop.
%.7

But p|H, @D nopop contains mepop and cannot hence be equivalent
to o] $,® @ ' pep which is disjoint from mepop. This contradiction
(%]

proves that pp(cf) consists only of isolated points and hence i8 finite
and diserete. It is known that p p(cf) being a C*-algebra with unit, this
implies that pe(cf) is finite-dimensional (use for instance [2] 4.7.2.).
What we have to prove next is that (Ker pop) [ Ker ois finite-dimensional.

Consider $' == p(Ker pop) ($). It will be sufficient to prove that
&’ is finite-dimensional. Suppose £’ is infinite-dimensional and let =
be an irreducible representation of p(p|$’) (cf) — Consider then $,c<
9O 9 the greatest reducing subspace for p lgog such that plg,
be disjoint from mopop. Consider also =¥ equivalent to m(j € IN). Then,
we have

el ®els, o3 e® ?n‘j’°P°P-

But mopop is contained at most a finite number of times in plg @ pls,
while it has infinite multiplicity in ¢ @® @ =¥ op o 2. Thus, these two repre-
i

sentations cannot be equivalent. This contradiction ends the pr(})é)f].)
THEOREM 1.8. Let Ac.L(H)/(A)(H) be a separable norm-closed
subalgebra containing the identity. Consider Lat(cf) the sel of all self-adjoint
projections ¢ € L($) |[H (D) such that (1—e) ve=0 for every x € ot. Then

the algebra

otlg(Lat (o)) = {y € L($)'H(9)l(1—¢)ye =0, (V)e € Lat(ct)]

18 equal of.
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Proof : Suppose T € £ ($) is such that

: €kl , P(T) & oA, we have t

the existence of a projection P e £($) such t)hat (’I — P)‘g Poegil;(zg;

for ev((:ry %epq‘;(ot) and (I — P)T Pe X(9). .

r consider B< £ ($H) the C*-algebra generated by p (of) and

rhere“ﬁi ta ;unc}lona} Jon JP(@)ﬂsuch that f(p(T)) = f an(d f)(d)l { 01}’ .
 Write fe=fy — £, 4 i (fy — Ju) With f,, for for f, pOSitive functionals.

Consider ¢ = f, -+ f, - f3 + f;. Then for Z‘ef é{f-, Ju positive fanctionals.

- ?Up(T) — 2)* (p(T) — 2)) >

> (3, [fia(n)- o)

2
)-(maxnf,-nrl
1i<4

1 .
2 —-(max ||f;|)7
1<iss

Let « be the state of p (B) proportional to ¢ and = the associated repre-

sentation on $, with cyelic vector £. Then we have =p(T) £

enta 23 . ) & w(ch) E.
Consider representations of p(B) equivalent tot = oanilbert ﬂgpa)ch
Sj,,j and & the corresponding cyclic vectors. Denote by @, the projection

of 55,,} onto m(cf) §;. The representations of B on $ and on $& @ $x
i

are approximately equivalent so that there is a unitary :
PR $Ap Sj,,j A e Y operator w :
i o

R — u* (R@Q; p(R)) u € H(H)

for every R e @. Consider P the projection O @ @ @;. Then, we have:
i

I—-Pse omp(8) P =0

for every 8 € p71(cf) and

I = P)(Todnp(T) Pek ($® ).
i

Hence, we can take P = u* P u.

E.D
COROLLARY 1.9. A separable sub-C*-algebra of the O % .
contai%ing ti;ce ig‘e'ntity 18 equal to ils bi-onm’?nutant. f atiin atgebra,
emark. The proof of the preceding theor
obtain the following fact : P § Heotem can be adapted to

Let ofycct,c L(9)/H(H), 1 ek, be separabl
there is a projection e e .2 (55,)./.% (9) lsuch thilijtl ¢ subalgebras then

inf {lly — «lljvect} < V2 (1—e) ye)
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for all ¥ e cfs.
§ 2.

Throughout this section $ is a complex separable infinite-dimen-
sional Hilbert space and @ ($) is the group of all unitary operators on $.

Consider T e .2($) and T, e {u T u*| u € U(D)}.

Let of be the C*-algebra generated by T and the identity operator.
Denote by ¢ the identic representation of A, o(®) = ». Then, since T,
is in the closure of the unitary orbit of 7T it is easily seen that there is a
unique representation g, of of on $ such that o, (Ty = T1,.

Clearly p and p, are approximately equivalent. Algo, conversely,
if p, is a representation of of on  and p, is approximately equivalent to p,
then ,(T) is in the closure of the unitary orbit of T = p(T). These
remarks show that the results in §1. have the following direct conse-

quences.
ProposITION 2.1. Qiven T e £ (9) and >0 there is an operalor

T, e {u T w*| u e UD)}

such that T — T, e 4(9), |T — Tyl < < and T, be an infinite direct sum
of irreducible operators.

This clearly implies the following proposition.

PROPOSITION 2.2. The norm-closure of the set of reducible operators
in L(9H) is L(H). .

ProprosiTiON 2.3. Let T e L(H) and

T, e {u T u*|u e AU}

Then we can find u, € U(H) such that Ty — u, T uf e A (H) and lim

| e T w¥ — Tyl = 0.
PROPOSITION 2.4. The unitary orbit

{u T u*| u e UH)}

is norm-closed if and only if the C*-algebra of T is finite-dimensional.
Remark. For (T, ..., T,) €(L($))* consider its unitary orbit

{(uTyw*, ..., uTwu*) e (LH)"ue AUH)}.

Call also an n-tuple reducible it T}, ..., T, have a joint reducing subspace.
Clearly, in this frame work, the results in § 1. imply the analogs of pro-
positions 2.1, 2.2., 2.3, 2.4, for n-tuples.

Proposition 2.4. leads naturally to the question whether its infini-
tesimal counterpart concerning the restriction of derivations to the anti-
hermitian operators is still true. An affirmative answer is provided by the
following theorem.
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THEOREM 2.5. Let T; e £($) (1 <j < n) and L,(H) denote the set:
of hermitian elements in £($). Consider the map

D : Ly(D) —> (L(D))" defined by : ®(X) = ([T,, X], ..
X €.Ly(9)). Then the following conditions are equivalent :

(1) the map @ has closed range.

(ii) the C*-algebra generated by Ty,...,T, is finite-dimensional.

The proof of the theorem will be based on two lemmas.

LEMMA 2.6.

Let Tje £(H) and Tje L(H)(1 <)< n). Suppose there is a
sequence of unitary operators u, € U($H) (k e IN) such that

o3 [Ty X]) (for

iim lex Ty — T5ll =0 (L <j < m).

Then the following conditions are equivalent :

(i) the map ®: L(9) - (L(S))* defined by OX) = ([T, X],
«ery [Ty X]) has closed range.

(i) the map @ :Ly(H) —~ (L(9))* defined by ®'(X) = ([T} X],
cory [Ty X1) has closed range.

Proof : 1t is clearly sufficient to prove that (i) = (ii).

Since @ has closed range there is a constant ¢ >0 such that for
every X e .£y(9) there is X e .£,($) such that |X)| < ¢ || &(X)|| and
®(X) = @(X). Thus, for X e £($) we can find X, such that IX: < c
I @(u! X u)|| and @(X,) = O(u¥ X u). Then, we have

lim sup |juF X .| <
k-~
< Clim sup|| Q(uFXu,)| =
ko0
= O] ®"(X)|.

Let Y be the weak limit of a sub-sequence of the Uy X uy. Then,
we have :

. DY) = O'(X)

and Y| < OJf @"(X)].
Q.E.D.
LEMMA 2.7,
Let R be a separable Hilbert space of finite or infinite dimension and
8y ..y 8y € L(R). Then, if
dim K2 ((2n)+! —1)/(2n—1) there is X ¢ Ly(K), {0,1} c o(X) such that

168, X< %ns,u (1< j<n).

NON-COMMUTATIVE WEYL-VON NEUMANN THEOREM 111

15

Proof. Pick a vector e R, £ 0 and consider M, = € & and
define by induction

Dy =WV V S0,V 5V S?“m'ﬂ
i=1 -1

i — — P, the projection of &
Then, dim M, < ((2n)* — 1)/(2n—1). Denote by Py
onto ,‘.Ul, and ’_"put Q, = Py, Qp = P, — P, (k>2). Then,

1k —1>2=8Q =0.

If Q.+, = 0 then P, is a reducing projection for all 8; and P, =0,
P, =+ I, so we can take X = Py.
If @iy, 5 0 let us define :

Ek4+1—1
=30
i=1

Consider

k
8= Z Qi+18, Q4
=1
k+1
8P=Y 8,0
=1
k
S§8’= Z Q:8; Q11
=1

3 -
We have P18, Piyi= Y, 8 and ||8P|<|18,]l. Then we have

i=1
[X, Sl] = [-X; -Pk+1 S} Pk+1] == [X’ S}”] + [Xv Sga)]
and

. , 1
ILX, 8911 < -lk— I8PI< 181

for ¢+ = 1,3. QED.

Proof of theorem 2.5.: Implication (ii) = (i) is quite easy and will
be left to the reader.
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" cmll?li:s IZSS%III;G (i) and we shall prove (ii). Because of Lemma 2.6
o eplace the ol (T, . 1) by ot v Lule i the s
of _ . esultsin § 1. we can su T /
is the direct sum of an infinit i ibl D ht 15
_ y of irreducible n-tuples. T i
can suppose there are projections P I e {N) such thatp P, # l(;atll’s ,;’;
? !

and P, =1 i ] . . .
Em 1 , which are minimal projections in the commutant of

the C*-algebra n
JSU-p dim P%<oo, generated by T,, ..., T,. We shall prove that
=Y

Indeed, if s i = i
y i slgg dim P, =, we can find for each k¥ ¢ IN a number

I, € IN such that dim P, k
" &(9) > ((2n)F+! —1)/(2n—1 N ,
ma 2.7 and operator X, e £,($) such tliém(t: ) and in view of Lem-

P X, P, = X,, G(Xk)D{Oyl}
and

2
LT Xl < 'E“T:N-

Now for every ¥ = Y* in th
rated by Ty, ..., T, we have e commutant of the C*-algebra gene-

Xy — X2 | X — Py TPul>—
2

since Py, YP, = AP,, Py bei ini jecti
. being a minimal projection of thi -
mutant and {0,1}coc (X;). These facts clearly cg)ntradicg (ighasng.onslo

sup dim P,($H)<oo.
iem
To end the proof it will be sufficient to prove that the center of the

;(I)mé?g;nsté o(f) Iflﬁ C*-algebra, ginera,ted by Ty, ..., T,is finite-dimension-

- 8 , e contrary, that there are mutually disjoint

minimal central projections (¢ i i utant, Oleasly we
t «(t € N) in this commutant. Cl

Ifa(}lf_ suppose even more, ithat there are Py, < @i(¢ € IN) with dim ?rga)vf

= dim Py($) (¢,§ € IN). Consider v; € £(H) partial isometries ‘ B

vf v = Py, vof = Py.
Since Py, ($) is finite-dimensional we may suppose, passing to a subse-
quence, that the v} T, v, form a convergent sequence for each 1 <<j <=n

But then:

-}.i.lg Vm Vi1 + Vmsy 8, Tl =0

NON-COMMUTATIVE W Ythim VIUIN 0¥ i Gismionn sas o~ moes -

17

r hand, if ¥ = Y* belongs to the

for each 1 < j < m. But, on the othe
T,1 <j <n) then:

commutant of the C*-algebra generated by the

“’vm 'D::+1 + Vm+1 'U,f, - Y“ Z

= || Qms1(Vm V1 + Vmea v} — Y)Qull = | Vmsz omll = 1

This clearly contradicts (i) and ends the proof.
Q.E.D.
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